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Abstract— Recent developments and advancements in the 

technology of wind energy have led to steady growth in the size 

and capacity of modern horizontal-axis wind turbines 

(HAWTs). Continuation of this trend is expected in the future, 

especially in offshore applications. In this regard, floating wind 

turbines provide an opportunity for capturing wind energy from 

offshore sites. Lightweight, strong, and durable materials are 

used by designers for wind turbine components. The use of 

these materials combined with structural optimization leads to 

more flexible wind turbine structures. Consequently, aeroelastic 

behavior of wind turbines has become one of the essential 

aspects of their design. In the current study, flutter analysis of 

blades in their parked condition on floating HAWTs has been 

investigated. A single blade was modelled as a non-uniform 

Euler-Bernoulli beam in combined flapwise bending and 

torsion, and a discretized form of the aeroelastic governing 

equations was obtained using the Ritz method and Lagrange 

equations. To represent a realistic and practical blade, the 

properties of the blades on a 5 MW HAWT from the National 

Renewable Energy Laboratory (NREL) were accounted for in 

the structural equations of motion. Further, the unsteady 

Theodorsen’s model was considered for simulating the 

aerodynamic load model. Discussions about the effects of base 

angular velocities in conjunction with airflow on the flutter 

speed and frequency of parked rotors are presented, and 

numerical results showed the significant effect of the tower base 

angular velocity, resulting from ocean waves, on the blade’s 

aeroelastic stability.  
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I.  INTRODUCTION 

Horizontal-axis wind turbines (HAWTs) are complex load-
carrying structures which are subjected to non-conservative 
forces. In conventional land-based turbines, detection and 
control of the aeroelastic instabilities, such as blade flutter, have 
been studied by various researchers. Offshore wind turbines are 
more recent facilities for capturing wind energy in offshore sites. 
Due to a number of prevailing meteorological and geographical 
factors present on open waters, such as continuous high velocity 
winds, and large available water surfaces that are located away 
from population centres, thus eliminating any concerns for 

acoustic and visual disturbances to the public, the use of offshore 
HAWTs have been on the rise. Indeed, these wind turbines are 
the best way for capturing energy from the strong and persistent 
winds in offshore fields. 

The trend towards lighter and more flexible blades may lead 
to aeroelastic instability of blades under certain circumstances, 
resulting in rapid destructive failure or limit-cycle oscillations of 
their structural components. Accordingly, the dynamics and 
aeroelasticity of wind turbine blades is a practical problem 
which has been investigated by many researchers. Although the 
aeroelastic and dynamic responses of blades in land-based wind 
turbines have been investigated rather thoroughly, analytical 
flutter stability analysis of blades in offshore wind turbines with 
realistic physical and geometrical properties has not received 
much attention in the literature. Hansen et al. in 2006 surveyed 
the state of the art in wind turbine aerodynamics and 
aeroelasticity [1]. The wind turbine aerodynamic modelling, 
structural modelling, and coupling between the aerodynamic and 
structural modelling parts were discussed in their work. Larsen 
et al. analyzed the random and nonlinear vibration of wind 
turbine blades by means of Monte Carlo simulation [2]. They 
modelled the blade as a rotating Euler-Bernoulli beam with 
geometrical and inertial nonlinearities. The nacelle displacement 
was assumed to act as a harmonic and narrow-banded excitation 
on the blade. Bagheri et al. used the ADAMS software package 
to create the dynamic nonlinear model for a floating wind turbine 
with a tension leg platform (TLP) and represented the dynamic 
response of the floating wind turbine structure to aerodynamic 
and hydrodynamic loads [3]. Lee et al. studied the operation and 
aeroelastic properties of wind turbine blades with dynamic 
flexible components and presented an aerodynamic model based 
on Modified Strip Theory [4]. Rafiee et al. investigated an 
aeroelastic analysis of a full-scale composite wind turbine blade 
by using its 3D model. They determined aerodynamic loading 
by using modified Blade Element Momentum theory and 
employed computational fluid dynamics for verification [5]. 

In the current study, flutter of offshore wind turbine blades 
in their parked condition has been investigated.  This condition 
is not only applicable for assessing the feasibility of installing 
wind turbines but also as a practical way to avoid probable 
damage in severe environmental conditions by locking the 
rotors. The blade was modelled as a non-uniform bending- 
torsion Euler-Bernoulli beam; and a discretized form of the 



   

coupled flapwise bend and twist coupled structural governing 
equations was obtained using the Ritz method and Lagrange 
equations. To accurately represent the physical and geometrical 
properties of the blade, for each property, a mathematical 
function of best fit has been developed from the series of data 
points obtained from a 5 MW NREL commercial wind turbine 
blade.  These functions were used in the coupled structural and 
aerodynamic governing equations. The aerodynamic model was 
obtained based on unsteady Theodorsen’s theory acting on wind 
turbine blade elements (BEM). The transient simulation results 
were compared with results obtained from the ABAQUS 
software package and good agreement was observed. A 
frequency-domain analysis was performed and discussions 
about the effects of roll, pitch, and platform yaw rotations on the 
flutter speed and frequency of parked rotors were presented and 
numerical results showed the significant effect of the tower 
platform rotations, due to ocean waves, on the blade’s 
aeroelastic instability.  

 

II. PROBLEM STATEMENT 

A 5 MW wind turbine as shown schematically in Fig. 1 is 
considered. The turbine blades act as cantilever beams with 
axially-varying structural properties. Combined flapwise 
bending and torsion motions are considered for this model. The 
wind turbine tower is assumed to be a rigid beam with three 
degrees of freedom of platform motion that are roll, pitch, and 
yaw motions. 

Several coordinate systems are used to obtain the equations 
of motion. As shown in Fig. 1, the orthogonal inertial coordinate 
system XYZ is fixed at the tower root. The unit vectors of this 
system are I, J, and K. Because the wind turbine floats on the 
water, it can rotate with respect to the inertial frame with angular 
velocity components ΩX , ΩY, and ΩZ about the X, Y, and Z axes, 
respectively. Another right-handed coordinate system is the 
blade coordinate system, xyz, with unit vectors i, j, and k in 
which the x axis lies along the length while y is aligned with the 
flapwise direction of the un-deformed blade. The third 
coordinate system, x'y'z' with unit vectors i', j', and k', is 
attached to the deformed blade. 

Figure 1. A schematic of wind turbine and selected coordinates. 

III. EQUATIONS OF MOTION  

Equations of motion are derived by using the Ritz method 
and Lagrange equations that may be expressed as:  

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝒒̇
) −

𝜕𝐿

𝜕𝒒
= 𝑸𝒏𝒄 (1) 

In this equation L is the Lagrangian, which is defined as: 

𝐿 = 𝑇 − 𝑈 (2) 

where T and U are the kinetic and strain energies, respectively. 
Also, q is the vector of generalized coordinates and Qnc is the 
vector of generalized forces. 

IV. WORK AND ENERGY TERMS 

The strain energy of the blade can be expressed as: 

𝑈 =
1

2
∫ ∬(𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝑥𝜂𝜀𝑥𝜂 + 𝜎𝑥𝜁𝜀𝑥𝜁)𝑑𝜂𝑑𝜁𝑑𝑥

𝐴

𝑅

0

 (3) 

where η and ζ are the cross-sectional local coordinates.  
Variables σij and εij are stress and strain components, 
respectively, which can be obtained from the displacement field 
[6]. By substituting these components into (3), the strain energy 
recasts as: 
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(4) 

In the above equation A and E are the cross-sectional area 
and modulus of elasticity of the blade, respectively. Parameters 
Iy’ and Iz’ are the blade cross-section moment of inertia about the 
y' and z' axes, respectively; J is the torsional rigidity constant; eA 
is the tensile axis (area centroid) offset from the elastic axis. 

Blade kinetic energy can be expressed as: 

𝑇 =
1

2
∫ ∬ 𝜌𝑽 ∙ 𝑽𝑑𝜂𝑑𝜁𝑑𝑥

 

𝐴

𝑅

0

 (5) 

where ρ is the blade density and V is the velocity vector of an 
arbitrary point on the turbine blade. 

The vector of generalized forces Qnc in (1) can be obtained 
by means of the Principal of Virtual Work. The virtual work of 
non-conservative forces acting on the blade may be expressed 
as: 

𝛿𝑊 = ∫ (−𝐿
𝑅

0

𝛿𝑤 + 𝑀𝛿𝜙)𝑑𝑥 (6) 

where L and M are the aerodynamic lift and moment, 
respectively. For the calculation of the unsteady lift and moment 
acting on the blade, Theodorsen’s theory has been adopted in 

 



   

combination with the blade element method (BEM) [7]. Also, 
δw and δφ are the virtual bending and torsional displacements of 
the blade. 

V. PHYSICAL AND GEOMETRICAL PROPERTIES OF THE 

BLADE 

In this research, the blade of an NREL offshore 5 MW 
HAWT is considered for the aeroelastic analysis. This kind of 
turbine, has been of interest by many researchers in recent years. 
All physical and geometrical properties of the blade, such as its 
mass per unit length, pre-twist angle, cross-sectional area, mass 
moments of inertia, and chord length vary along its span. Fig. 2 
shows, for example, the variation of the flap-wise inertia, edge-
wise inertia, and mass per unit length along the blade [9]. 

It can be seen from this figure that the blade properties 
change substantially along its span. Therefore, for an accurate 
modelling of the blade, its geometrical and physical properties 
should be considered as functions of the span-wise coordinate x. 

VI. DISCRETIZED AEROELASTIC GOVERNING EQUATIONS 

To extract the discretized form of the blade equations of 
motion, the Ritz method is applied to the kinetic and strain 
energy terms. To this end, w and ϕ are represented as: 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑖(𝑥)𝑏𝑖(𝑡)

𝑁

𝑖=1

 

𝜑(𝑥, 𝑡) = ∑ 𝜑𝑖(𝑥)𝑑𝑖(𝑡)

𝑁

𝑖=1

 

(7) 

where N is the number of superimposed modes and 𝑤𝑖(𝑥)and 
𝜑𝑖(𝑥) are bending and torsional modes, with their respective 
time coefficients 𝑏𝑖(𝑡) and 𝑑𝑖(𝑡) . The following family of 
spatial functions is used here [11]: 

𝑤𝑖(𝑥) =
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𝑥
𝑅
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𝑥
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𝑅
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2𝑅
) 

(8) 

Figure 2. Variation of the flap inertia, edge inertia and mass per unit length 
along the blade span [9]. 

Substituting (7) and (8) into (4) and (5), and employing the 
resulting equations in the Lagrange equations, finally leads to a 
set of coupled ordinary differential equations in the standard 
form of: 

𝑴𝒒̈ + 𝑪𝒒̇ + 𝑲𝒒 = 𝑸𝒏𝒄 (9) 

Herein, M, K, and Qnc denote the mass matrix, stiffness 
matrix and non-conservative load vector, respectively, while q is 
the overall vector of the generalized coordinates: 

𝒒 = {𝒃𝒊
𝑇𝒅𝒊

𝑇}
𝑇
 (10) 

VII. SOLUTION METHODOLOGY 

Due to intricate and complex coupling of generalized 
coordinates in aeroelastic governing equations, an exact closed-
form solution is formidable, but an approximate solution can be 
obtained based on the p-k method [10]. According to the p-k 
method, the airflow velocity that results in positive values for the 
real parts of the eigenvalues corresponds to the flutter velocity 
and correspondingly the flutter frequency. 

VIII. FLUTTER BOUNDARY DETECTION FOR PARKED ROTORS  

Offshore wind turbines may be affected by different weather 
conditions. In the case of extreme weather disturbances and 
severe sea states it is necessary to lock the turbine rotor. The 
flutter boundary, in this situation, can be detected by eigenvalue 
analysis. Under a locked condition, Equations (9) reduce to a set 
of first-order coupled ordinary differential equations as:  

𝒁̇ = [𝑨]𝒁 (11) 

where the system matrix [A] and the state vector Z, are: 

[𝑨] = [
[𝟎] [𝑰]

−[𝑴]−1[𝑲] −[𝑴]−1[𝑪]
] 

 

𝒁 = {𝒒𝑻𝒒̇𝑻}𝑻 

(12) 

The problem is now reduced to that of determining the 
eigenvalues of matrix [A] at a given air speed. The flutter 
speed is calculated through an iterative procedure rendering 
zero the real part of the complex eigenvalues. 

Six bending modes and six torsion modes are considered in 
the Ritz method to develop the discretized form of the 
aeroelastic governing equations. Pertinent data for the 
particular offshore wind turbine that have been chosen for 
analysis and discussion are given in Table 1. Due to the 
assumption of the dominant wind direction being the Y 
direction, the value of pitch rotation (in the Y direction) of the 
tower is selected to be greater than the other two roll and yaw 
rotation values. 

 

 

 

 

 



   

Table 1. Main parameters of the offshore wind turbine 

Parameter Value 

Yaw rotation (ΩX) 0.5 rad/s 

Pitch rotation (ΩY) 1.0 rad/s 

Roll rotation (ΩZ) 0.5 rad/s 

Rotational velocity of the rotor (Ω) 0 rad/s 

Position of the angle of the blade relative to the fixed 
coordinate system (γ) 

0 degree 

Height of the tower of the turbine (l) 87.6 m 

IX. STRUCTURAL MODEL VALIDATION 

To validate the accuracy of the structural model developed 
in this investigation, results in the absence of the aerodynamic 
loads are compared with the corresponding results obtained 
using the ABAQUS software package. To this end, the NREL 
offshore 5 MW wind turbine blade is modelled exactly using 
CATIA software. Using the geometrical data of the blade, the 
surface points of each blade section were obtained. The blade 
model was finally extracted by entering the coordinates of 
surface points in CATIA software. The final model of the blade 
is shown in Fig. 3(a). After solid modelling the blade in CATIA, 
in order to verify the theoretical results, the resulting model was 
imported into ABAQUS; and by using vibration analysis, natural 
frequencies of the blade were obtained. Fig. 3(b) shows the first 
flapwise bending mode of the blade.  

 

(a) 

 

(b) 

Figure 3. (a) The blade final model in CATIA, (b) The first bending mode in 
ABAQUS 

 

 

Table 2 compares the results from our structural model with 
those obtained using ABAQUS. The low percentage differences 
between the two results demonstrates the accuracy of the present 
model. The small differences between the two sets of results can 
be attributed to the fact that in our model curve-fitted functions 
are used for the blade properties while in the ABAQUS analysis, 
the exact model was simulated. 

X. OFFSHORE WIND TURBINE WITH PARKED ROTORS 

As noted previously, in severe environmental conditions the 
rotors of HAWTs are usually locked to avoid any potential 
damage. In these conditions, the high seas can create significant 
rotational velocities on the tower platform of any kind of 
offshore wind turbine. The effects of the presence of these 
rotational velocities on the flutter boundary of parked turbine 
blades are presented here. 

The effect of the yaw rotation of the tower ΩX on flutter 
velocity and frequency of the blade is shown in Fig. 4. It can be 
seen from this figure that increasing ΩX decreases both the flutter 
speed and frequency. Although ΩX does not affect the flutter 
boundary in a significant manner, it affects the flutter frequency 
considerably. The effects of the pitch and roll ΩY and ΩZ on 
flutter velocity and frequency of the turbine blade is shown in 
Figs. 5 and 6, respectively. Fig. 5, in which ΩX = ΩZ = 0, 
indicates that increasing ΩY will decrease the flutter speed and 
frequency dramatically. This can be considered as an important 
factor in floating wind turbine design, since ΩY can destabilize 
the blades and lead to flutter at lower speeds. 

Fig. 7 shows the effects of simultaneous presence of pitch 
and roll on flutter velocity and frequency of the blades. In this 
case ΩX = 0 and ΩY is equal to ΩZ. This situation may be faced, 
for example, when local developing waves and fully-developed 
waves from a distant storm system combine, resulting in the 
presence of wave components from distinctly-different 
directions. 

Table 2. Compare the results from the model with ABAQUS software 
solutions 

Frequency Mode Current Study ABAQUS 
Difference 

(%) 

First Bending 
Frequency (rad/s) 

5.3146 5.4281 2.136 

Second Bending 
Frequency (rad/s) 

17.4057 17.8369 2.477 

First Twisting 
Frequency (rad/s) 

6.7545 6.0084 11.046 

Second Twisting 
Frequency (rad/s) 

31.2231 30.0471 3.766 

 



   

 

(a) 

 

(b) 

Figure 4. Effects of the yaw rotation of the tower ΩX on (a) flutter velocity, 
Uf and (b) flutter frequency, wf of parked rotor blades. 

 

(a) 

 

(b) 

Figure 5. Effects of the pitch rotation of the tower ΩY on (a) flutter 
velocity, Uf and (b) flutter frequency, wf of parked rotor blades. 

 

(a) 

 

(b) 

Figure 6. Effects of the roll rotation of the tower ΩZ on (a) flutter velocity, Uf 
and (b) flutter frequency, wf of parked rotor blades. 

 

(a) 

 

(b) 

Figure 7. Effect of simultaneous presence of roll and pitch rotation of the tower 
ΩY and ΩZ on (a) flutter velocity, Uf and (b) flutter frequency, wf of parked rotor 

blades. 



   

Results indicate that an increase of wave-induced rotational 
velocities in the tower platform can induce a lower flutter speed 
and frequency. This means that the platform rotations decrease 
the aeroelastic stability region of the turbine blades. For large 
values of these angular velocities, the diagram may coincide 
with the zero-velocity line which means that the base angular 
velocity leads to instability even in the absence of the air flow. 
Table 3 compares and summarizes results of the flutter analysis 
of the wind turbine blades in the parked rotor condition. 

XI. CONCLUSION 

Parametric flutter analysis of the blades of an offshore 
HAWT on any kind of platform that is subjected to three 
rotations, is considered in this study. The blade is modelled as a 
non-uniform bending-torsion flexible beam and its geometric 
and physical properties are extracted from a NREL 5 MW wind 
turbine blade. Unsteady aerodynamic lift and moment are 
obtained based on unsteady Theodorsen’s theory and included 
in the aeroelastic governing equations. A parametric study of 
platform rotations on the flutter speed and frequency of parked 
rotors is presented. Results show that the platform rotation has a 
detrimental effect on the flutter and restricts the blade’s dynamic 
stability region. Although, increasing the rotational velocity of 
the platform always seems to lower the flutter speed and 
frequency, simultaneous generation of roll and pitch, ΩY and ΩZ 

of the tower platform has the most significant effect on limiting 
the stability region of turbine blades. 

Table 3. The summary of the aeroelastic results for wind turbines with 
parked rotors 
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𝑠
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rad

𝑠
) , 𝛺𝑋 = 𝛺𝑍 = 0 94.9 5.1854 
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rad

𝑠
) , 𝛺𝑋 = 𝛺𝑌 = 0 63.1 5.0234 
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rad

𝑠
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