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Abstract—The main goal of estimation theory is to minimize 
state error estimation while maintaining robustness. While the 
Kalman filter produces the optimal estimate for known linear 
systems with Gaussian noise, most electromechanical systems 
such as magnetorheological dampers contain nonlinearities. 
Nonlinear strategies such as the extended Kalman filter and 
smooth variable structure filter can be used to estimate the force 
produced by a damper given its velocity and acceleration and 
applied current. This paper compares the extended Kalman 
filter and the smooth variable structure filter on a 
magnetorheological damper that is subject to harmonic 
excitation. The purpose of this study is to apply and compare 
estimation methods that may be used in conjunction with a 
reliable controller for applications on a magnetorheological 
damper. 

Keywords – Estimation strategies; extended Kalman flter; 
smooth variable structure filter; magnetorheological hysteresis 

I.  INTRODUCTION 

Noise is inherently present in measurement data and is the 
product of sensor precision and environmental factors. State 
estimation is the process of determining the values of state 
variables from systems and measurements with uncertainty and 
noise. The purpose of estimation is to minimize the state 
estimation error while simultaneously being robust to 
disturbances, faults, and modeling uncertainty [1]. Reliable 
estimates of state parameters are necessary for safely controlling 
electro-mechanical systems such as a magnetorheological (MR) 
damper in real-time [2].  

A. Estimation Strategies 

Rudolf Kalman introduced a new approach to prediction 
problems and linear filtering in 1960. His work would eventually 
be referred to as the Kalman filter (KF) [2]. The KF uses 
sequential discrete-time measurements from a linear system 
model with Gaussian noise to produce an optimal state estimate 
[2]. The Kalman filter has numerous applications such as target 
tracking, signal processing and fault detection [2] [3] [4] [5] [6]. 
The Kalman gain minimizes the trace of the a posterior state 

error covariance matrix which is proven to produce the optimal 
state estimate for known linear systems with Gaussian noise [2] 
[3] [4].  

The extended Kalman Filter (EKF) can be used to estimate 
the states of a nonlinear dynamic system. The filter uses local 
linearization of the system model at the operating point in order 
to calculate the corrective Kalman gain [2]. The EKF derivation 
is based on the Taylor series expansion of the nonlinear system 
model also known as the Jacobian [2]. However, if the system is 
highly nonlinear, the EKF solution may diverge from the true 
state trajectory.  

The smooth variable structure filter (SVSF) is an extension 
of the KF that adds stability and robustness in the presence of 
disturbances, noise, and modeling uncertainties [3] [4]. The 
efficacy of the EKF and SVSF is compared when applied to a 
MR hysteretic force model. 

B. Magnetorheological Systems 

Magnetorheological (MR) fluids are a class of smart fluids 
that significantly change their viscosity when a magnetic field 
is applied. This intelligently controllable fluid allows for 
smooth force adjusting and repeatability [7]. Jacob Rabinov 
discovered the MR fluid effect in the 1940s and commercial 
MR products have recently attained low viscosities and high 
yield stresses [8]. MR fluids consist of micron-scale (1 to 10 
μm) magnetically polarizable particles suspended in a carrier 
medium such as mineral or silicon oil [9]. Surfactants are often 
used in the non-colloidal mixture in order to prevent settling of 
the suspended particles [10]. The magnetic particles typically 
make up between 20 and 60 percent of the MR fluid’s volume 
[9].  

When a magnetic field is applied to the MR fluid, the 
ferromagnetic particles rearrange to form linear structures and 
chains. The formation of these structures results in a change in 
the fluid’s viscosity. The effect is almost instantaneous with a 
100 kPa yield stress that is achievable within a few milliseconds 
[11].  



   

Increasing the strength of the magnetic field increases the 
yield strength of the MR fluid. This property has three main 
engineering application modes: flow (valve) mode, shear mode 
and squeeze mode [10]. In flow mode, the magnetic field is 
normal to the flow of the MR fluid and is typically used for 
linear dampers [10]. In shear mode, the magnetic field is normal 
to the displacement of the shear walls and is used for rotary 
dampers, breaks, and clutches [10]. Finally, squeeze mode 
utilizes a magnetic field that is parallel to the desired 
displacement of the containing walls. The squeeze mode 
provides large forces for relatively small displacements [10].   

C. Magnetorheological Dampers 

The quick response time of MR fluid behavior when exposed to 
a magnetic field is ideal for electromechanical devices such as 
actuators and dampers. Semi-active MR control devices have 
the versatility of active dampers while retaining the reliability 
of passive ones [10]. The two main engineering applications of 
MR fluids are linear and rotary dampers. 

The main advantage of linear MR dampers is the 
controllability of the system damping by changing the input 
current. By changing the current, the magnetic induction in an 
orifice between two separated MR fluid chambers is regulated 
[10]. Linear MR dampers such as the one shown in Fig. 1 use 
the MR fluid in flow mode to treat the orifice as a valve for the 
MR fluid. One of the first applications of linear MR dampers in 
the automotive industry is its use as a secondary suspension 
element for on and off highway vehicles [8]. By controlling the 
damping arrangement, the excitation frequency and vibration 
transmission can be adjusted as desired [8]. 

 

 
Figure 1.  Diagram of single ended linear MR damper [10] 

II. SMOOTH VARIABLE STRUCTURE FILTER 

The SVSF uses an upper bound on the level of unmodeled 
dynamics and noise in order to achieve robustness to 
disturbances and modeling uncertainties. Like the KF, the 
SVSF is uses a system model and can be applied to both 
differentiable linear or nonlinear dynamic equations [2, 12].  

The SVSF estimation process is similar to the KF. However, 
it presents a novel method of gain calculation [2, 13]. The 
predicted state estimates 𝑥ො௞ାଵ|௞  and state error covariance 
𝑃௞ାଵ|௞ are first calculated as per the following: 

           𝑥ො௞ାଵ|௞ ൌ 𝐴𝑥ො௞|௞ ൅ 𝐵𝑢௞ (1) 

          𝑃௞ାଵ|௞ ൌ 𝐴𝑃௞|௞𝐴் ൅ 𝑄௞. (2) 

Utilizing the predicted state estimates 𝑥ො௞ାଵ|௞, the corresponding 
predicted measurements 𝑧̂௞ାଵ|௞  and measurement errors 
𝑒௭,௞ାଵ|௞ may be calculated: 

           𝑧̂௞ାଵ|௞ ൌ 𝐶𝑥ො௞ାଵ|௞ (3) 

             𝑒௭,௞ାଵ|௞ ൌ 𝑧௞ାଵ െ 𝑧̂௞ାଵ|௞. (4) 

     The SVSF gain is a function of the following: 1) a priori and 
the a posteriori measurement errors 𝑒௭,௞ାଵ|௞ and 𝑒௭,௞|௞; 2) the 
smoothing boundary layer widths 𝜓 ; 3) and the ‘SVSF’ 
memory or convergence rate 𝛾. The SVSF gain 𝐾௞ାଵ is defined 
as follows [2] [3]: 

     𝐾௞ାଵ ൌ 𝐶௞
ା𝑑𝑖𝑎𝑔 ቂቀቚ𝑒௭ೖశభ|ೖ

ቚ ൅ 𝛾 ቚ𝑒௭ೖ|ೖ
ቚቁ ∘

𝑠𝑎𝑡 ቀ𝜓തିଵ𝑒௭ೖశభ|ೖ
ቁቃ 𝑑𝑖𝑎𝑔 ቀ𝑒௭ೖశభ|ೖ

ቁ
ିଵ

. 
(5) 

where ∘ signifies Schur (or element-by-element) multiplication 
and the superscript ൅ refers to the pseudoinverse of a matrix [2] 
[3]. The saturation function of (5) is defined by the following: 

𝑠𝑎𝑡 ቀ𝜓തିଵ𝑒௭ೖశభ|ೖ
ቁ

ൌ ቐ

1, 𝑒௭೔,௞ାଵ|௞/𝜓௜ ൒ 1
𝑒௭೔,௞ାଵ|௞/𝜓௜ , െ1 ൏ 𝑒௭೔,௞ାଵ|௞/𝜓௜ ൏ 1

െ1, 𝑒௭೔,௞ାଵ|௞/𝜓௜ ൑ െ1.
 

(6) 

where 𝜓തିଵ is a diagonal matrix constructed from the elements 
of the smoothing boundary layer vector 𝜓: 

𝜓തିଵ ൌ ൦

ଵ

టభ
0 0

0 ⋱ 0
0 0  

ଵ

ట೘

൪. (7) 

     The state estimates 𝑥ො௞ାଵ|௞ and state error covariance matrix 
𝑃௞ାଵ|௞ are updated respectively as per the following: 

           𝑥ො௞ାଵ|௞ାଵ ൌ 𝑥ො௞ାଵ|௞ ൅ 𝐾௞ାଵൣ𝑧௞ାଵ െ 𝐶𝑥ො௞ାଵ|௞൧ (8) 

        𝑃௞ାଵ|௞ାଵ ൌ ሾ𝐼 െ 𝐾௞ାଵ𝐶ሿ𝑃௞ାଵ|௞ሾ𝐼 െ 𝐾௞ାଵ𝐶ሿ்

൅ 𝐾௞ାଵ𝑅௞ାଵ𝐾௞ାଵ
் . 

(9) 

     Finally, the updated measurement estimate 𝑧̂௞ାଵ|௞ାଵ  and 
measurement errors 𝑒௭,௞ାଵ|௞ାଵ are calculated, and are used in 
later iterations: 

           𝑧̂௞ାଵ|௞ାଵ ൌ 𝐶𝑥ො௞ାଵ|௞ାଵ  (9) 

𝑒௭,௞ାଵ|௞ାଵ ൌ 𝑧௞ାଵ െ 𝑧̂௞ାଵ|௞ାଵ. (10) 

 



   

The existence subspace denoted by the dotted black line 
shown in Figure 2. represents the level of uncertainty present in 
the estimation process, in terms of modeling errors or the 
presence of noise [3]. The width of the existence space is a 
function of the uncertain dynamics associated with the 
inaccuracy of the internal model of the filter as well as the 
measurement model, and varies with time [2] [3] [4].  

While this value is not precisely known, an upper bound may 
be selected based on a priori knowledge [3]. The estimated state 
trajectory is smoothed when the smoothing boundary layer is 
defined larger than the existence subspace boundary [3]. If the 
smoothing term is too small, however, chattering oscillations 
persist due to the uncertainties being underestimated [3]. 

 

Figure 2.  SVSF concept with existence subspace boundary layer [5] 

III. MAGNETORHEOLOGICAL HYSTERESIS MODEL 

The force-velocity relationship of an MR damper is 
strongly dependent upon the current. However, variations in 
current do not appear to affect the width of the hysteresis loop 
[14]. The damping force of an MR damper can be described 
by the following: 

𝑓ௗ ൌ 𝑓௜ሺ𝑖ሻ𝑓௛ሺ𝑥, 𝑥ሶ , 𝑥ሷሻ (11) 

where 𝑓௜  is a function of current, i, and 𝑓௛  describes the 
hysteretic behavior of the piston displacement, velocity, and 
acceleration denoted by 𝑥, 𝑥ሶ , and 𝑥ሷ  respectively [14]. 

The nonlinear incremental current is characterized by an 
asymmetric sigmoid function with a bias in the horizontal axis 
given by: 

𝑓௜ሺ𝑖ሻ ൌ 1 ൅
𝑘ଶ

1 ൅ 𝑒ି௔మሺ೔శ಺బሻ
െ

𝑘ଶ
1 ൅ 𝑒ି௔మூబ

;   𝑖 ൒ 0 (12) 

where 𝑘ଶ, 𝑎ଶ, and 𝐼଴ are constants obtained through measured 
data. 

 

A model composed of two polynomial functions 
corresponding to positive and negative piston acceleration was 
used to test the efficacy of the EKF and SVSF. This model was 
first proposed by Choi et al [15]. The polynomial hysteresis 
model can by: 

𝑓௛ ൌ ൭෍𝑏௞𝑥ሶ

௡

௞ୀ଴

ሺ𝑡ሻ௞൱ ;   𝑛 ൌ 6 (13) 

where 𝑏௞  represents the polynomial coefficient constants 
obtained through experimentation, k is polynomial exponent, 
and n is the order of the polynomial. Combing (12) and (13) the 
piece-wise hysteric damping force function becomes [14]: 

𝑓ௗ ൌ

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑓௜ሺ𝑖ሻ ൬෍ 𝑏௨௞𝑥ሶሺ𝑡ሻ௞ሶ

଺

௞ୀ଴
൰ ; 

𝑓௜ሺ𝑖ሻ ൬෍ 𝑏ௗ௞𝑥ሶሺ𝑡ሻ௞
଺

௞ୀ଴
൰ ; 

𝑓௜ሺ𝑖ሻ ൬෍
1
2
ሺ𝑏௨௞ ൅ 𝑏ௗ௞ሻ𝑥ሶ ሺ𝑡ሻ௞

଺

௞ୀ଴
൰ ; 

෍ 𝑥ሷ ൏ 0

෍ 𝑥ሷ ൐ 0

෍ 𝑥ሷ ൌ 0

 (14) 

where 𝑏௨௞ and 𝑏ௗ௞ represent the coefficients of the upper and 
lower polynomial respectively. In order to ensure the 
convergence of the two polynomial functions near the 
extremities, when the piston acceleration is 0, the damping force 
is calculated as the average of the upper and lower polynomial 
functions [14].  The values for the model parameters are shown 
in Table I. 

TABLE I.  PARAMETERS FOR HYSTERESIS MODEL 

Parameter Values 

𝑘ଶ 3.10 

𝑎ଶ 18.53 

𝐼଴ -0.15 

𝑏௨଴ 0.06  

𝑏௨ଵ 4.97 

𝑏௨ଶ -71.29 

𝑏௨ଷ -1461.82  

𝑏௨ସ 23232.45  

𝑏௨ହ 190972.68  

𝑏௨଺ -2319223.80 

𝑏ௗ଴ -0.07  

𝑏ௗଵ 5.03  

𝑏ௗଶ 78.00 

𝑏ௗଷ -1549.09  

𝑏ௗସ -27398.44  

𝑏ௗହ 210738.82  

𝑏ௗ଺ 3017864.40 
 



   

IV. EKF AND SVSF ASSESSMENT 

The EKF and SVSF were used to estimate the position, 
velocity, acceleration, and damping force of a linear MR 
damper similar to the one shown in Fig 1. The MR damper is 
subjected to harmonic excitation at a frequency of 1.5 Hz and 
an amplitude of 6.25 mm. The input current of the MR damper 
is 1.0 A. The system (Q) and measurement (R) noise covariance 
matrices are given by the following:  

𝑄 ൌ 𝑑𝑖𝑎𝑔[1e-8 1e-6 1e-4 1e-3] (15) 

𝑅 ൌ 𝑑𝑖𝑎𝑔[1e-7 1e-5 1e-3 2e-2]. (16) 

The simulation was run for a duration of 10 cycles totaling 
approximately 6.67 seconds. The velocity and damping force 
over this duration is depicted in Fig. 3. 

 
Figure 3.  Velocity and Damping Force of MR Damper 

The boundary layer for the SVSF was optimized using a grid 
search across all states while trying to minimize the normalized 
error squared. The boundary layer vector contains the following 
values: 

𝜓 ൌ 𝑑𝑖𝑎𝑔[0.02    0.14    4.0    4.0]. (16) 

A close-up of the velocity and force estimates are shown in 
Fig 4. and Fig 5. respectively. These figures are able to show a 
representation of the efficacy of each filter by visually 
comparing the filtered estimates with the true states. The SVSF 
is significantly more robust to measurement noise and is able to 
produce smoother state estimates when compared to the EKF as 
shown in Fig. 4. 

The hysteretic force-velocity curve is shown in Fig. 6. The 
SVSF produces a significantly smoother characterization than 
the sensor measurement and outperforms the EKF as shown by 
the normalized error squared plot in Fig 7.  

 

 

Figure 4.  Velocity of MR Damper (close-up) 

 

Figure 5.  Force of MR Damper (close-up) 

 

Figure 6.  Hystereitc Force-Velocity Curve 



   

 

Figure 7.  Normalized Error Squared 

The root mean squared error (RMSE) of the estimate with 
respect to the true state value was calculated to precisely 
compare the efficacy of the EKF and SVS. Table II shows the 
RMSE values for both filters. 

TABLE II.  ROOT MEAN SQUARED ERROR 

Filter 
State 

Position  
(m) 

Velocity 
(m/s) 

Acceleration 
(m/s2) 

Force 
 (Pa) 

EKF 1.483e-4 1.412e-3 9.596e-3 4.641e-2 

SVSF 1.075e-4 1.088e-3 10.538e-3 4.375e-2 

 

Based on the RMSE values, the SVSF outperformed the EKF 
in terms of position, velocity, and damping force estimates. 
While the SVSF did not outperform the EKF, in acceleration 
estimation, the velocity and force estimates are the most crucial 
states when implementing a controller for the MR damper. 
Thus, the SVSF is the preferred model-based filter in this 
scenario. However, the EKF may be considered easier to 
implement as it does not require tuning of boundary layer 
parameters (although it does still require the use of a 
linearization matrix to approximate the nonlinearities). 

V. CONCLUSIONS 

In this paper, a hysteresis force model of a linear 
magnetorheological damper was studied using the EKF and 
SVSF. In this study, the SVSF was able to significantly mitigate 
system and measurement noise and produced smaller state 
estimation errors compared with the EKF. The SVSF can be 
used to obtain reliable estimates of state parameters which are 
necessary for controlling electro-mechanical systems. Future 
studies will use the SVSF for fault detection on the MR damper 
due to wear on the diaphragm or inconsistencies in the current 
supply. 
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