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Abstract—In isotropic elasticity concerning large 

deformations, the non-linear response of materials is described 

by parameters, which are not constants but scalar functions of 

deformations. The procedure of defining them is not simple as 

there are several ways of calculating the strain and stress 

tensors, based on the different configuration of non-linear 

deformation. In the current work, non-linear equations of 

stretch modulus are presented and their dependence on both 

stress and strain tensors is shown. For defining the strain-

energy density function of the hyperelastic materials, selected 

experiments were done considering four materials: natural 

rubber, neoprene, EPDM and silicone. These materials were 

examined under simple tension and from the arising results, 

Cauchy (true stress) and 1st Piola-Kirchhoff (engineering) 

stress tensor are calculated, using an existing model of strain-

energy function, which best fits the obtained experimental 

data. For each of the above stress tensors, the non-linear case 

of the stretch modulus is defined for the examined materials. 

The results were combined to each other for small and large 

deformations. 
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I.  INTRODUCTION 

In isotropic theory of elasticity, only two parameters are 
needed for describing the response of a material, which is 
subjected to a deformation. In the case of linear deformation, 
the couple of parameters are Poisson’s ratio and Young’s 
modulus [1], which are constant and are used for determining 
any other information, which describes the mechanical 
behavior. In contrast, for large deformations, these parameters 
are scalar functions of deformation, which constitutes a more 
complicated procedure of describing the mechanical response 
of a material. Namely, finite deformation includes different 
ways of expressing strain and stress, due to the several ways of 
describing deformations [2]. More specific, in order to describe 
the deformation of a material, in respect to its initial position or 
to its current point, 1st Piola-Kirchhoff and Cauchy stress 
tensors, respectively, must be defined. Moreover, the strain 
tensor must be compatible to the configuration, which the stress 
tensors are considered. In the present paper, the non-linear 

expressions of stretch modulus are defined for describing the 
change of Cauchy and 1st Piola-Kirchhoff stress tensors with 
the changes of the logarithmic strain and the displacement 
gradient, respectively [2]-[3]. In order to calculate the stress 
tensors for hyperelastic, incompressible materials, the strain-
energy density function must be defined first, and this is 
possible by selecting one of the existing models of this function 
from the bibliography [4]. The choice of the most compatible 
strain-energy function model is a result of the best fitting of the 
experimental data obtained. Two different samples of four 
materials are examined in simple tension. The materials are: 
natural rubber, EPDM, neoprene and silicone. For each of 
them, Cauchy and 1st Piola-Kirchhoff stress tensors are 
defined, for the corresponding deformation. The results present 
difference between small and large deformations. Finally, the 
non-linear stretch modulus for each material is been calculated 
and compared with the classic Young's modulus of the linear 
theory.  

II. THEORETICAL BASIS 

A. Strain and Stress Tensors 

Consider an incompressible, isotropic material, which is 
hyperelastic, namely the strain-energy density function W =  
W (I1,I2) remains unaffected for the deformation and so, it can 
be expressed as a function of the principal invariants 
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2, where k (k=1,2,3) 

are  the principal stretch ratios. In the current research, the 
polynomial model with two terms is selected, due to its best fit 
with the experimental data [4]. The selected strain-energy 
density function is described by 

W = C10(I1-3) + C01(I2-3) + C11(I1-3) (I2-3) 
                       + C20 (I1-3)2 + C02 (I2-3)2,  
  () 

where Cij (i,j = 0,1,2) are material constants. Several stress and 
strain tensors are used in finite deformation, depending on the 
considered configuration. For the present work, two stress 
tensors are defined, which are widely used in non-linear theory 
of elasticity, for incompressible materials. The force per unit 
area in the current configuration is represented by the Cauchy 
stress tensor, known, also as true stress, and takes the form   



   

  = − pI  + b + b−−  () 

where B is the left Cauchy-Green deformation gradient, which 

has the squared stretches i
2 as principal values; I is the identity 

tensor, p is an unknown hydrostatic stress and b1=2W/I1, b-1= 

-2W/I2, are two response functions depending on the stress 
invariants, determined by experiments [5]. The force per unit 
area in the reference configuration is presented by the 1st Piola-
Kirchhoff stress tensor, known as engineering stress, and is 
expressed by 

 P = F− () 

where  is the Cauchy stress tensor and F is the deformation 
gradient. Any other stress tensor can be defined as a function of 
the deformation gradient or the stress tensors calculated above, 
such as the symmetric 2nd Piola-Kirchhoff stress tensor, 
commonly used in computational analysis. For the present 
work, the case of a simple tension acting in the first direction is 
studied, where the corresponding extension, takes the form   

 x1 = X1  x2 = k()X2,  x3 = k()X3,  () 

where (x1, x2, x3) and (X1, X2, X3) are the Cartesian coordinates 

for the current and reference configuration, respectively;  is 
the extension ratio in the direction of where the force is 

applied, and k() the stretch ratio in the orthogonal direction. 
For the special case of isochoric deformation, namely detF=1, 

the orthogonal stretch takes the form k()=-1/2.     

B. Non-Linear Stretch Modulus 

Correspondingly to the linear theory, the material’s 
response to the extension must be described by considering 
both stress and strain tensors, which are functions of finite 
deformation. Materials get stiffer or softer when a loading is 
applied. The parameter describing the above tendency is known 
as the non-linear stretch modulus [2], [6] and [7], which has 
different forms according to the selected stress and strain 
tensors. The stretch modulus, for the case of the Cauchy stress 
tensor, is defined in terms of the logarithmic strain tensor 

e0=ln(), in the form 
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where 1() is the only non-zero component of the Cauchy 

stress tensor and  is the axial stretch ratio in the direction of 
the loading. For the case of the 1st Piola-Kirchhoff stress 
tensor, the stretch modulus, arising from the displacement 
gradient, is expressed here, in terms of the stretch ratio as 
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where P1() is the only non-zero component of the 1st Piola-
Kirchhoff stress tensor. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

For the present work, two samples of four different 
materials are subjected to simple tension until they have 
reached their fracture point, with 0.1 mm/s speed, in room 
temperature. The arising test data was used for defining the 
reaction functions b1, b-1 needed for calculating the Cauchy and 
1st Piola-Kirchhoff stress tensors, given by (2)-(3). The 
selected model of strain-energy density function, which best 
fits the experimental data, was Polynomial with two terms, 
given by (1). In Fig. 1 and Fig. 3, the only non-zero Cauchy 
and 
  

 

Figure 1. Cauchy stress tensor versus axial stretch ratio, for four different 
materials 

 

 

Figure 2. Non-linear stretch modulus for Cauchy stress tensor versus axial 
stretch ratio, for four different materials 



   

1st Piola-Kirchhoff stress components are shown for some of 

the examined materials, and based on the corresponding 

results, the nonlinear stretch modulus is calculated and shown, 

in Fig. 2 and Fig. 4. It is obvious that, all the materials, except 

for EPDM, have a similar behavior. For small deformation, the 

different stress tensors are almost equal and linear, and the 

stretch modulus tend to infinite as the denominator of the 

corresponding equations (5) and (6) tend to zero. For that case, 

the stretch limit (→1) is selected for describing the change of 

stress to strain, coinciding with the constant Young’s modulus, 

for each material. 

IV. CONCLUSIONS  

Consequently, the material mechanical response to finite 
deformation can be defined by several ways, in respect to the 
selected configuration. Moreover, describing an axial stretch, in 
respect to any configuration of their position, the stress tensors 
can be calculated in several ways. For the force applied to the 
area of the current configuration, the Cauchy stress tensor is 
used, but for the force considered to the area of the reference 
position of the materials, the proper stress tensor is the 1st 
Piola-Kirchhoff stress tensor. For infinitesimal deformations, 
the change of stress in respect to the corresponding stretch ratio 
is almost linear and equal for each stress measurement. By 
selecting the most suitable configuration describing the 
material’s response to deformation, the determination of a 
parameter concerning the stiffness (or softness) of a material, is 
possible. This parameter is a scalar function of deformation, 
known as the non-linear stretch modulus and for small 
deformation, it is equal to the Young's modulus of the linear 
theory. 
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Figure 3. 1st Piola-Kirchhoff stress tensor versus axial stretch ratio, for four 
different materials 

 

 

Figure 4. Non-linear stretch modulus for 1st Piola-Kirchhoff stress tensor versus 
axial stretch ratio, for four different materials 

 

 

 


