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Abstract—A systematic and effective approach to the formu-
lation of the dynamics of a planar parallel robot is proposed
in this paper, based on the concept of the natural orthogonal
complement (NOC). This approach is demonstrated on a robot
designed for high-frequency, small-amplitude operations. Its
kinematic relations are formulated based on planar screw theory.
Then, the constraint wrenches in the Newton-Euler equations are
eliminated with the aid of the NOC, namely, the twist-shaping
matrix, which maps the active joint-rate array into the robot twist
array. The dynamics model of minimum dimension is formulated.
Then, upon comparison with the ADAMS simulation results, our
model is proven to be not only accurate, but also effective for the
dynamics modeling, which shows that the approach is suitable
for the dynamics simulation and real-time control of the robot
of interest.

Index Terms—dynamics modeling, parallel robot, planar, nat-
ural orthogonal complement, validation

I. I NTRODUCTION

For a parallel-kinematics machine (PKM), the dynamics
model becomes crucial not only for the system simulation, but
also for its effective model-based control. This model describes
the relations among the position, velocity and acceleration of
the active joints and the actuator torques. Dynamics models
of multi-body systems are generally derived based on: the
Newton-Euler formulation [1], the Euler-Lagrange formulation
[2], the principle of virtual work [3], Hamilton’s principle [4]
or Kane’s equations [5]. All the methods mentioned above
have their own advantages and disadvantages.

The Newton-Euler formulation is classical, but still present
in dynamics modeling. In this method, the Newton-Euler
equations are formulated based on the free-body diagram.
Elimination of the nonworking constraint wrenches is the
key step in the derivation of the minimal-order constrained
dynamics equations of the system. The concept of thenat-
ural orthogonal complement (NOC) was first introduced by
Angeles and Lee [6] as the tool to eliminate the constraint
wrenches. The NOC is defined as the transformation matrix
that maps the independent joint rates into the system twist.It
becomesnaturally an orthogonal complement of the system
velocity constrains. The efficiency of the NOC has been
shown on its application to the dynamics modeling of serial
mechanical systems [7]. However, for PKMs, due to the

inherent complexity caused by their closed-loop structure, the
derivation of the NOC poses its own challenges.

The subject of this paper is the formulation of the dynamics
of a PKM based on the NOC. This approach is applied
and validated on a planar parallel robot designed for high-
frequency, small-amplitude operations. In Section 2, the robot
architecture is introduced. The kinematic relations of each
limb chain and the kinematic relations between the active-
joint rates and the Cartesian twist are formulated based on
the screw theory, as applied toplanar systems in Section 3.
Based on the foregoing kinematic relations, the NOC of the
robot is first derived, then its dynamics in Section 4. In Section
5, upon comparison of the simulation results obtained with
ADAMS, the dynamics model in question is validated. Finally,
conclusions are the subject of Section 6.

II. ROBOT ARCHITECTURE

The subject of this paper is the dynamics modeling of a
3-PRR1 planar parallel robot, whose architecture is shown in
Fig. 1, and the model validation. This robot bears asym-
metric architecture. The moving platform (MP) and the base
platform (BP), defining equilateral triangles, are connected
via three identical limbs. Each limb is a serial PRR chain,
with the prismatic actuator mounted on the fixed base. This
robot is designed to generate high-frequency, small-amplitude
vibrations in the plane, for applications such as rigid-body
inertia-parameter identification, earthquake simulation, and so
on. The axes of the R joints are normal to the plane of
motion, while the directions of the Pjoints are coplanar. The
centers{Ai}

3
1 of the R joints carried by the prismatic actuators

trace corresponding sides of an equilateral triangle of vertices
{Bi}

3
1. The centers of the proximal (to the BP) R joints are

{Ai}
3
1, those of the distal R joints being{Mi}

3
1. The MP

plane is that of the equilateral triangle with vertices{Mi}
3
1.

The centroidC of the MP triangle is selected as the operation
point. The robot under study is a generator of the planar-
motion subgroup [8].

For the purpose of analysis, a Cartesian frameOXY Z is
attached to the BP, with its origin located at the centroidO

1P and R stand for prismatic and revolute joints, respectively. Moreover,
actuated joints are underlined.



of the BP triangle. Moreover, theX-axis points in theB3B1

direction; theY -axis points along theOB2 direction; and the
Z-axis is normal to the BP and passes throughO.
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Fig. 1. An arbitrary posture of the 3-PRR planar parallel robot

III. K INEMATICS
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Fig. 2. Reference posture of the 3-PRR planar parallel robot

The reference posture of the robot is illustrated in Fig. 2.
At this posture, the sides of the MP triangle are parallel to the
corresponding sides of the BP triangle, while the centroidC
of the MP triangle coincides with the originO of the inertia
frame {X, Y, Z}. The arbitrary posture shown in Fig. 1 is
defined by the pose of the MP, which is represented by a three-
dimensional arrayp, the planar screw of the MP, namely,

p =

[

θ
c

]

∈ IR3, c =

[

xc

yc

]

(1)

whereθ ∈ IR denotes the angle of rotation of the MP from
its reference orientation, whilec the position vector of the
MP centroidC, represented by[xc, yc]

T , in theOXY plane.
Then, theplanar MP twist tM is simply2 the time-derivative

2The relationω = θ̇ holds only in the planar case, not so in the three-
dimensional case!

of p, namely,

tM = ṗ =

[

θ̇
ċ

]

=

[

ω
ċ

]

(2)

whereω denotes the MP angular velocity around theZ-axis,ċ
the velocity of the MP center of mass (c.o.m.), which coincides
with its centroid.

The robot under study has three limbs, each being a serial
PRR chain. For thejth limb, j = 1, 2, 3, the MP twist can be
represented as a linear transformation of the array of ratesof
the Pjoint and the two R joints, namely,

tM = Jj γ̇j , j = 1, 2, 3 (3)

with

Jj =

[

0 1 1
ej EpAj EpMj

]

∈ IR3×3, E =

[

0 −1
1 0

]

(4a)

γ̇j =
[

u̇j ϕ̇Aj ϕ̇Mj

]T
∈ IR3 (4b)

where matrixE represents a rotation about theZ-axis through
an angle of90◦. In Fig. 1, the unit vectorsej ∈ IR2 and
fj ∈ IR2 represent the directions of thejth Pjoint and of vector
−−−→
AjMj , respectively. Moreover,uj denotes the displacement
of the jth P joint from its reference configuration in Fig. 2.
Furthermore,ϕAj denotes the angle fromej to

−−−→
AjMj, and

ϕMj the angle from
−−−→
AjMj to the corresponding side of the

MP triangle. Furthermore,Jj is the Jacobian mapping the
joint-rate arrayγ̇j of the jth limb into the MP twisttM . The
columns ofJj are theplanar Plücker arrays of the joint axes
in the jth limb. Moreover,pMj denotes vector

−−−→
MjC, while

pAj represents vector
−−→
AjC.

Eliminating the passive joint rates,{ϕ̇Aj}
3
1 and{ϕ̇Mj}

3
1 in

(3), the kinematic relation between the active joint-rate array
u̇ = [u̇1, u̇2, u̇3]

T and the MP twisttM is obtained as

HtM = Du̇ (5)

whereuj , j = 1, 2, 3 denotes the speed of thejth actuator.
Moreover,H andD denote, respectively, theforward and the
inverse3 Jacobian matrices of the robot, relating the Cartesian
velocity arrayṗ with the active joint-rate arraẏu. Matrix D

is given below:

D = diag(d1, d2, d3), dj = cosϕAj , j = 1, 2, 3 (6)

Moreover, the entrieshj,i of matrix H are

hj1 = rsin
(

ϕMj −
π
6

)

hj2 = cos (ϕAj + φj)
hj3 = sin (ϕAj + φj)

, j = 1, 2, 3 (7)

wherer is the circumradius of the MP triangle. Moreover,φj

denotes the angle from theX-axis toej , namely,

φ1 = 0, φ2 = 2π/3, φ3 = −2π/3 (8)

3From the context, the qualifier does not mean amatrix inverse!



IV. DYNAMICS

A. Dynamics of Each Link

In following the established practice, the robot under study
is modeled as a multi-rigid-body system. The seven moving
rigid links are the three moving sliders, the three limb-links
and the MP.

In the planar case, theinertia dyad 4 of each moving rigid
body is a3× 3 matrix, namely,

Mi =

[

Ii 0T

0 mi1

]

, i = 1, 2, · · · , 7 (9)

whereIi represents the moment of inertia of theith moving
rigid body around theZ-axis at its c.o.m., andmi the mass
of the same body. Moreover,0 is the two-dimensional zero
vector, while1 is the2×2 identity matrix. The twist of theith
moving rigid body is also a three-dimensional array, namely,

ti =
[

ωi ċTi
]T

, i = 1, 2, · · · , 7 (10)

with ωi denoting the angular rate of theith moving rigid
body, positive in the c.c.w. direction, anḋci the velocity of
the c.o.m. of the same body. Theplanar wrenchwi applied
onto theith moving body is represented as

wi = wW
i +wC

i =

[

ni

fi

]

, i = 1, 2, · · · , 7 (11)

whereni and fi denote the resultant moment about and the
resultant force acting at the c.o.m. of theith moving body.
Moreover,wW

i represents the working wrench exerted on the
ith body by the environment and the actuators, whilewC

i the
nonworking constraint wrench exerted, in the same body, by
the neighbouring links.

Then, neglecting all the dissipative wrenches, the Newton-
Euler equation of theith moving rigid body is expressed as

Miṫi = wA
i +wC

i , i = 1, 2, · · · , 7 (12)

with wA
i denoting the actuator-supplied wrench, i.e., the active

component of the working wrenchwW
i , exerted on theith

body. For thejth limb, j = 1, 2, 3, let tj represent the twist
of the slider andtj+3 that of the limb-linkAjMj . Moreover,
t7 = tM represents the MP twist.

B. Dynamics of the Robot

Combining the Newton-Euler equations of each moving
rigid body, the dynamics of the overall robot is described by
21 uncoupled equations:

Mṫ = wA +wC (13)

with

M = diag(M1, M2, · · · ,M7) ∈ IR21×21 (14a)

4Here we borrow the term in italics from the original concept proposed by
von Mises [9], as a6 × 6 array, in the context of rigid-body dynamics in
three-dimensional space.

t =











t1
t2
...
t7











, wA =











wA
1

wA
2
...

wA
7











, wC =











wC
1

wC
2
...

wC
7











∈ IR21

(14b)
The next step is the elimination of the constraint-wrench

vector arraywC , followed by the reduction of the uncoupled
system of 21 equations into a set of three coupled equations of
motion. Thekinematic constraint equations are expressed in
a linear homogenous form in the robot-twist vectort ∈ IR21,
namely,

Kt = 0, t ∈ IR21, K ∈ IR21×21 (15)

Moreover, the robot twist is determined by the speed of the
actuators; therefore the twist vectort is expressed as a linear
transformation of the active joint-rate arrayu̇, namely,

t = Tu̇, T ∈ IR21×3 (16)

with T defined as the robottwist-shaping matrix.
Upon substitution of (15) into (16), we have

KTu̇ = 0, ∀u̇ ∈ IR3 (17)

which shows that the productKT vanishes:

KT = O21×3 (18)

with O21×3 denoting the21× 3 zero matrix. The robot twist-
shaping matrixT is referred to as thenatural orthogonal
complement (NOC) of the the constraint matrixK.

The robot constraint wrenchwC produces no power on the
system, i.e.,

tTwC = u̇TTTwC = 0 ⇒ TTwC = 0 (19)

The above equation shows that the transpose of the twist-
shaping matrixT is thewrench annihilator5 of wC .

Upon pre-multiplying (13) byTT and substitution of (16)
into (13), the joint-space dynamics model of the robot without
constraint wrenches is obtained:

τττ = Iü+Cu̇ (20)

with

I ≡ TTMT, C ≡ TTMṪ, τττ ≡ TTwA (21)

whereI ∈ IR3×3 denotes the inertia matrix of the overall robot
in joint space, andC ∈ IR3×3 the matrix of Coriolis and
centrifugal forces of the robot in the same space. Moreover,
τττ = [τ1, τ2, τ3]

T represents the force array of the actuators,
with τj , j = 1, 2, 3, denoting the force exerted by thejth
actuator onto its slider. The robot inertia matrixI in joint
space is symmetric, positive-definite and posture-dependent.
Moreover, it is dimensionally-homogenous, bearing units of
kg.

5A wrench annihilator is defined a matrix that maps a wrench vector array
into the zero array [10].



Further, matrixT is partitioned in the form

T =











T1

T2

...
T7











, Ti =
∂ti
∂u̇

, i = 1, 2, · · · , 7 (22)

with Ti denoting the twist-shaping matrix of theithe body,
mapping the actuator-speed arrayu̇ into the twist ti of the
same body. Therefore,I andC in (20) become

I =

7
∑

i=1

TT
i MiTi, C =

7
∑

i=1

TT
i MiṪi (23)

The twist tj of the jth slider is readily obtained:

tj = u̇j

[

0
ej

]

∈ IR3, ej ∈ IR2, j = 1, 2, 3 (24)

Therefore, the twist-shaping matricesTj ∈ IR3×3, j = 1, 2, 3
of the sliders are, with0 ∈ IR2,

T1 =

[

0 0 0
e1 0 0

]

(25)

T2 =

[

0 0 0
0 e2 0

]

(26)

T3 =

[

0 0 0
0 0 e3

]

(27)

The mapping from the active joint-rate arrayu̇ into the twist
tj+3 of the jth limb-link is not that straightforward. We do
this in two steps. First, let us map thejth limb-rate arrayγ̇γγj

into the jth limb-link twist tj+3.

tj+3 = u̇j

[

0
ej

]

+ ϕ̇Aj

[

1
(lc/l)Emj

]

= Uj+3γ̇j (28a)

with

Uj+3 =

[

0 1 0
ej (lc/l)Emj 0

]

j = 1, 2, 3 (28b)

wheremj denotes the vector stemming fromAj and ending
at Mj . Moreover, l denotes the length of the limb-link,lc
the distance fromAj to the c.o.m. of the limb-link. Then,
according to (3) and (5), the mapping from the active joint-
rate arrayu̇ into the jth limb-rate arrayγ̇γγj is obtained:

γ̇γγj = J−1
j H−1Du̇, j = 1, 2, 3 (29)

Therefore, the twist-shaping matricesTj+3, j = 1, 2, 3, of
the limb-links are

Tj+3 = Uj+3J
−1
j H−1D, j = 1, 2, 3 (30)

The last, namely, the7th moving rigid body is the MP.
Based on (5), its twist-shaping matrix is

t7 = tM → T7 = H−1D (31)

Lower Moving Platform

Upper Moving Platform

Limb-link

Voice-coil Actuator

Base Platform

Elevation Hock

Fig. 3. Photo of the prototype of the 3-PRR planar parallel robot

V. M ODEL VALIDATION

A desk-top scale prototype of the 3-PRR robot was designed
and prototyped. Its prototype is shown in Fig. 3.

The robot is driven by three identical voice-coil actuators6.
The slider of the actuated Pjoint contains the moving coil of
the actuator and the plate attached to the moving coil. The
MP is composed of three parts, namely, the lower moving
platform, the elevation hock and the upper moving platform.

The side lengtha of the MP triangle, the side lengthb of
the BP triangle and the lengthl of the limb-link are given
below:

a = 110 mm, b = 400 mm, l = 159.15 mm (32)

Moreover, the inertia properties of the different parts are
recorded in Table I.

TABLE I
INERTIA PROPERTIES OF THE PARTS IN THE ROBOT

Part Mass (g) Moment of inertiaa (g·mm2)
Actuator moving coil 1020 -

Actuator plate 449.66 -
Limb-link 638.63 1578606.60

Lower moving platform 417.35 716283.92
Elevation puck 287.65 132353.74

Upper moving platform 1047.57 5324476.16
aMoment of inertia w.r.t. the c.o.m. of each part.

In order to validate the above-derived model, kinematics
and dynamics simulation tests of the robot under different
trajectories were conducted not only in Matlab, based on the
mathematical models derived in Sections 3 and 4, but also
in ADAMS, based on its CAD model. Two test trajectories
were selected to represent various motions of the robot. These
trajectories are expressed by the displacements of the MP
centroidC, in the Cartesian frame, and the angle of rotation of
the MP from its reference pose of Fig. 2. The trajectories are
combinations of the high-frequency, small-amplitude harmonic

6The actuators in the 3-PRR planar robot are VCAR0262-
0249-00A, manufactured by SUPT Motion (http://supt-
motion.com/en/productshow15 76.html). Their total stroke is 24.9 mm,
while their peak force is 262 N.



motions alongX-, Y -axes and aroundZ-axis, as described
below:







x1(t) = −2sin
(

20πt+ π
6

)

+ 1 (mm)
y1(t) = 4sin

(

20πt− π
6

)

+ 2 (mm)
θ1(t) = (3/180)πsin (20πt) (rad)

(33)







x2(t) = −2sin
(

20πt+ π
6

)

+ 1 (mm)
y2(t) = 4sin

(

20πt− π
6

)

+ 2 (mm)
θ2(t) = (3/180)πsin (10πt) (rad)

(34)

Under Matlab, the simulation test trajectories are first
transformed into the motor displacements in joint space via
the inverse-kinematics model. Then, based on the inverse-
dynamics model, the motor forces were calculated. Under
ADAMS, the CAD model of the robot is shown in Fig. 4. In
the two test trajectories, the motor displacements and forces
calculated from the mathematical models and simulated in
ADAMS, are shown in Figs. 5 and 6.

Fig. 4. CAD model of the 3-PRR planar parallel robot in ADAMS simulation

The results calculated via the mathematical models and
those reported by ADAMS are apparently in agreement, which
shows that the kinematics and the dynamics models derived in
this paper, based on screw theory and the NOC, are correct.
They can be used in the dynamics simulation and model-based
control of the robot introduced in this paper.

VI. CONCLUSIONS

A systematic approach to the formulation of the dynamics
of PKMs, based on the concept of the NOC, was proposed.
This approach was demonstrated on a planar parallel robot
designed for high-frequency, small-amplitude displacements.
Its kinematics and dynamics modeling were reported. Then,
upon comparison with the ADAMS simulation results, our
methodology is proven to be not only accurate, but also
effective for dynamics modeling. It can be used for the
dynamic simulation and real-time control of a parallel robot for
high-frequency, small-amplitude displacements. Finally, the
physical prototype of the robot introduced here is in its final
stages of commissioning. Further progress on this project is
the subject of a forthcoming paper.

0 0.1 0.2 0.3 0.4 0.5 0.6
-10

0

10
Motor 1

Mathmatical Model
ADAMS Simulation

0 0.1 0.2 0.3 0.4 0.5 0.6
-10

0

10

D
is

p
la

c
e

m
e

n
t 

(m
m

) Motor 2

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

-10

0

10
Motor 3

(a) Motor displacements

0 0.1 0.2 0.3 0.4 0.5 0.6

-50

0

50

Motor 1
Mathmatical Model
ADAMS Simulation

0 0.1 0.2 0.3 0.4 0.5 0.6

-50

0

50

F
o

rc
e

 (
N

)

Motor 2

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

-50

0

50

Motor 3

(b) Motor forces

Fig. 5. Mathematical model vs. ADAMS simulation under Trajectory 1
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APPENDICES

A. Inverse Displacement Analysis

Here, we focus on the calculation of the joint vari-
ables, {ϕAj}

3
1 and {ϕMj}

3
1, given the robot posturep =

[

θ xc yc
]T

.
Let Lj denote the line along thejth BP side. This line is

parallel toej and passes throughBj , whose coordinates in the
OXY frame are

[

xBj

yBj

]

= R

[

cos (φj − π/6)
sin (φj − π/6)

]

(35)

whereR denotes the circumradius of the BP triangle. The
equation ofLj in theOXY frame is thus expressed as

y − yBj = tanφj (x− xBj) , j = 1, 2, 3 (36)

The distancedC
j from C to Lj is calculated as

dC
j =

|xctanφj − yc + yBj − xBjtanφj |
√

tan2φj + 1
, j = 1, 2, 3

(37)
The distancedM

j from Mj to Lj is, in turn,

dM
j = dC

j − rsin
(π

6
− θ

)

, j = 1, 2, 3 (38)

wherer denotes the circumradius of the MP triangle. There-
fore, the joint variablesϕAj andϕMj are calculated as

ϕAj = arcsin
(

dM
j /l

)

, ϕMj = π + θ − ϕAj (39)

B. Representation of the Twist-shaping Matrices

When representing the twist-shaping matrices{Ti}
6
1 in the

OXY Z frame, vectors{ej}31, {pMj}
3
1, {mj}

3
1 and {pAj}

3
1

are needed. In the frame of interest, the foregoing vectors are
expressed as

ej =

[

cosφj

sinφj

]

, mj =
−−−→
AjMj = l

[

cos (ϕAj + φj)
sin (ϕAj + φj)

]

(40)

pMj =
−−−→
MjC = r

[

cos (ϕAj + ϕMj − π/6 + φj)
sin (ϕAj + ϕMj − π/6 + φj)

]

(41)

pAj =
−−→
AjC = mj + pMj (42)
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