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Abstract—A systematic and effective approach to the formu-
lation of the dynamics of a planar parallel robot is proposed
in this paper, based on the concept of the natural orthogonal
complement (NOC). This approach is demonstrated on a robot
designed for high-frequency, small-amplitude operations Its
kinematic relations are formulated based on planar screw tkeory.
Then, the constraint wrenches in the Newton-Euler equatios are
eliminated with the aid of the NOC, namely, the twist-shapirgy
matrix, which maps the active joint-rate array into the robot twist
array. The dynamics model of minimum dimension is formulatel.
Then, upon comparison with the ADAMS simulation results, ou
model is proven to be not only accurate, but also effective fahe
dynamics modeling, which shows that the approach is suitabl
for the dynamics simulation and real-time control of the robot
of interest.

Index Terms—dynamics modeling, parallel robot, planar, nat-
ural orthogonal complement, validation
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inherent complexity caused by their closed-loop strugttire
derivation of the NOC poses its own challenges.

The subject of this paper is the formulation of the dynamics
of a PKM based on the NOC. This approach is applied
and validated on a planar parallel robot designed for high-
frequency, small-amplitude operations. In Section 2, timt
architecture is introduced. The kinematic relations ofheac
limb chain and the kinematic relations between the active-
joint rates and the Cartesian twist are formulated based on
the screw theory, as applied pbanar systems in Section 3.
Based on the foregoing kinematic relations, the NOC of the
robot is first derived, then its dynamics in Section 4. In Bect
5, upon comparison of the simulation results obtained with
ADAMS, the dynamics model in question is validated. Finally
conclusions are the subject of Section 6.

Il. ROBOT ARCHITECTURE

For a parallel-kinematics machine (PKM), the dynamics Thelsubject of this paper is the dynamics modeling of a
model becomes crucial not only for the system simulation, bg-PFRR" planar parallel robot, whose architecture is shown in

also for its effective model-based control. This model dbss
the relations among the position, velocity and accelemabib

Fig. 1, and the model validation. This robot bearsyar
metric architecture. The moving platform (MP) and the base

the active joints and the actuator torques. Dynamics mod@l@tform (BP), defining equilateral triangles, are conaect
of multi-body systems are generally derived based on: tNig three identical limbs. Each limb is a seriaRR chain,

Newton-Euler formulation [1], the Euler-Lagrange forntida
[2], the principle of virtual work [3], Hamilton’s princig [4]

with the prismatic actuator mounted on the fixed base. This
robot is designed to generate high-frequency, small-augdi

or Kane’s equations [5]. All the methods mentioned abovdbrations in the plane, for applications such as rigidyod

have their own advantages and disadvantages.

The Newton-Euler formulation is classical, but still pnese

inertia-parameter identification, earthquake simulagtammd so
on. The axes of the R joints are normal to the plane of

in dynamics modeling. In this method, the Nevvton-EuIéPOtior" while the directions of the Pints are coplanar. The
equations are formulated based on the free-body diagra‘?ﬁ.nters{Ai}f of the R joints carried by the prismatic actuators

Elimination of the nonworking constraint wrenches is th&aC€ corresponding sides of an equilateral triangle dfices

key step in the derivation of the minimal-order constraine

dynamics equations of the system. The concept ofrtite

{jBi}if. The centers of the proximal (to the BP) R joints are
{A;}3, those of the distal R joints beingM;}3. The MP

ural orthogonal complement (NOC) was first introduced by Plane is that of the equilateral triangle with verti¢as}}.
Angeles and Lee [6] as the tool to eliminate the constraiff'® centroid”” of the MP triangle is selected as the operation
wrenches. The NOC is defined as the transformation matRRINt: The robot under study is a generator of the planar-
that maps the independent joint rates into the system tiistMOton subgroup [8]. _ _ _
becomesnaturally an orthogonal complement of the system FOf the purpose of analysis, a Cartesian framgYZ is
velocity constrains. The efficiency of the NOC has becfitached to the BP, with its origin located at the centrid
shown 0_” its application to the dynamics modeling of serialip and R stand for prismatic and revolute joints, respegtivéloreover,
mechanical systems [7]. However, for PKMs, due to thetuated joints are underlined.



of the BP triangle. Moreover, th& -axis points in theB;B;  of p, namely,

direction; theY -axis points along th&® B, direction; and the )

Z-axis is normal to the BP and passes throdgh ty=p= [ z } — [ ‘g } (2)
wherew denotes the MP angular velocity around thexis, ¢

the velocity of the MP center of mass (c.0.m.), which coiesid
with its centroid.

The robot under study has three limbs, each being a serial
PRR chain. For theth limb, j =1, 2, 3, the MP twist can be
represented as a linear transformation of the array of i&tes
the Pjoint and the two R joints, namely,

t1\/[=Jj’7j, 7=12,3 3)
with
10 1 1 3%3 10 -1
JJ o €; Eij EpMj €R ’ E= 1 0
(4a)
Fig. 1. An arbitrary posture of the 3RR planar parallel robot »‘y]. = [ U PaAj  PMy ]T € R? (4b)

where matrixE represents a rotation about theaxis through
1. KINEMATICS an angle of90°. In Fig. 1, the unit vectore:; € IR* and
f; € R? represent the directions of thiéh Pjoint and of vector
A;M;, respectively. Moreovery; denotes the displacement
of the jth P joint from its reference configuration in Fig. 2.

—
Furthermore,p4; denotes the angle from; to A;M;, and
vm; the angle fromA;M; to the corresponding side of the
MP triangle. Furthermore]; is the Jacobian mapping the
joint-rate arrayy; of the jth limb into the MP twistt,;. The
columns ofJ; are theplanar Pliicker arrays of the joint axes
in the jth limb. Moreover,p,;; denotes vectoi/;C', while
p4; represents vectad;C'.
Eliminating the passive joint rate$y 4,313 and {13 in

(3), the kinematic relation between the active joint-rateya
w = [iy, 12, 4s]” and the MP twist:,; is obtained as

Ht,, = Du (%)

Fig. 2. Reference posture of the BRR planar parallel robot . .
wherew;, j = 1,2,3 denotes the speed of thigh actuator.

g/loreover,H andD denote, respectively, tHerward and the
Inverse® Jacobian matrices of the robot, relating the Cartesian
velocity arrayp with the active joint-rate array. Matrix D

is given below:

The reference posture of the robot is illustrated in Fig.
At this posture, the sides of the MP triangle are paralleht t
corresponding sides of the BP triangle, while the cent@id
of the MP triangle coincides with the origi@ of the inertia
frame {X,Y, Z}. The arbitrary posture shown in Fig. 1is D = diag(d,, do, d3), dj =cospa;, j=1,2,3 (6)
defined by the pose of the MP, which is represented by a three-
dimensional array, the planar screw of the MP, namely, ~ Moreover, the entries;; of matrix H are

0 3 Ze hi1 = rsin ((pM4 — E,)
= R _ 1 j iT% _
P [C]E © [yc] @) hja =cos(pa; +¢5) , j=1,2,3 (7)

. hjs = sin (o4, + ¢;
wheref € IR denotes the angle of rotation of the MP from 53 = $in (a5 + 95)

its reference orientation, while the position vector of the wherer is the circumradius of the MP triangle. Moreover,
MP centroidC, represented byz., y.]7, in theOXY plane. denotes the angle from thE-axis toe;, namely,
Then, theplanar MP twist t;; is simply’ the time-derivative

¢1 = 07 ¢2 = 27T/35 ¢3 = _27T/3 (8)

2The relationw = @ holds only in the planar case, not so in the three-
dimensional case! SFrom the context, the qualifier does not meamairix inverse!



A
IV. DYNAMICS t1 w w

1 1
t wil w¢
A. Dynamics of Each Link t = _2 . wa = _2 ., wl= _2 c R*!
In following the established practice, the robot under gtud ¢ w.A e
is modeled as a multi-rigid-body system. The seven moving 7 7 7 (14b)
rigid links are the three moving sliders, the three limtkéin o eyt step is the elimination of the constraint-wrench
and the MP.

vector arrayw®, followed by the reduction of the uncoupled
system of 21 equations into a set of three coupled equations o
motion. Thekinematic constraint equations are expressed in

I, of ' a linear homogenous form in the robot-twist vectot € IR?!,

0 mil]’ 1=1,2,---,7 (9) namely,

In the planar case, thimertia dyad* of each moving rigid
body is a3 x 3 matrix, namely,

|
o , Kt=0 telR? KelR>*2 (15)

where I; represents the moment of inertia of tfth moving

rigid body around the&Z-axis at its c.0.m., aner; the mass Moreover, the robot twist is determined by the speed of the

of the same body. Moreoveg, is the two-dimensional zero actuators; therefore the twist vectbiis expressed as a linear

vector, whilel is the2 x 2 identity matrix. The twist of théth  transformation of the active joint-rate arraéy namely,

moving rigid body is also a three-dimensional array, namely
t=Tu, TelR**3 (16)

ti=[w &1, i=1,2,--,7 (10)

with T defined as the robdtist-shaping matrix.

with w; denoting the angular rate of th#h moving rigid Upon substitution of (15) into (16), we have

body, positive in the c.c.w. direction, argd the velocity of ) ) 3

the c.o.m. of the same body. Tiptanar wrenchw; applied KTu=0, VaeR (17)

onto theith moving body is represented as which shows that the produ#& T vanishes:

i

AT
?

] . i=1,2,---,7 (11) KT = O21x3 (18)

H@ith 0,1x3 denoting the2l x 3 zero matrix. The robot twist-

wheren; and f; denote the resultant moment about and t ) . .
shaping matrixT is referred to as thenatural orthogonal

resultant force acting at the c.o.m. of thd moving body. ,
Moreover,w!V represents the working wrench exerted on thgpmplement (NOC) of the the constraint matrik.
ith body by the environment and the actuators, whifé the The ro_bot constraint wrenc® produces no power on the
nonworking constraint wrench exerted, in the same body, SyStem. I-€.,
the neighbouring links. S tTwCl = aTTTwC =0 = TTwC =0 (19)
Then, neglecting all the dissipative wrenches, the Newton-

Euler equation of théth moving rigid body is expressed as The above equation shows that the transpose of the twist-
. N o shaping matrixT is thewrench annihilator® of w©.

Mit; =wi +w;', i=12,-,7 (12) Upon pre-multiplying (13) byI'" and substitution of (16)
with w# denoting the actuator-supplied wrench, i.e., the actif&to (13), the joint-space dynamics model of the robot witho
component of the working wrenctv’V, exerted on theth ~constraint wrenches is obtained:

7

body. For thejth limb, j = 1,2, 3, let t; represent the twist — Tii + C 20
of the slider and:; 3 that of the limb-link A; M;. Moreover, Tt (20)
t7 = t)s represents the MP twist. with

B. Dynamics of the Robot I=T"MT, C=T"MT, r=T"w4 (21)

~ Combining the Newton-Euler equations of each movingherer ¢ R3%3 denotes the inertia matrix of the overall robot
rigid body, the dynamics of the overall robot is described Qy, joint space, andC € R**® the matrix of Coriolis and
21 uncoupled equations: centrifugal forces of the robot in the same space. Moreover,
) T = [11, To, ’7'3]T represents the force array of the actuators,
Mt = w* +w© (13) with 7;, j = 1,2,3, denoting the force exerted by thih
actuator onto its slider. The robot inertia matdixin joint

with space is symmetric, positive-definite and posture-dep@nde
M = diag(M1, My, --- ,My) € R**2! (14a) Moreover, it is dimensionally-homogenous, bearing units o
kg.

4Here we borrow the term in italics from the original concepgmsed by
von Mises [9], as & x 6 array, in the context of rigid-body dynamics in  5A wrench annihilator is defined a matrix that maps a wrenchovearray
three-dimensional space. into the zero array [10].



Further, matrixT is partitioned in the form

T,
T, )
T = ] , i:8t.17 =1,2,---,7 (22)
: au
T~

with T; denoting the twist-shaping matrix of théhe body,
mapping the actuator-speed arrayinto the twistt; of the
same body. Thereford,and C in (20) become

7 7
1= TIM,T;, C=Y TIMT; (23)

i=1 i=1

The twistt; of the jth slider is readily obtained:

(o
thUy[e_

}EIR3, e; €R? j=1,2,3 (24)
J

Therefore, the twist-shaping matricly € IR**3, j =1,2,3
of the sliders are, witl® € IR?,

[0 0 0]

Ti=|e 00 (25)
[0 0 0]

T2~ e o0 (26)
[0 0 0]

Ts=| g o o @7)

The mapping from the active joint-rate arraynto the twist

t;j+3 of the jth limb-link is not that straightforward. We do

this in two steps. First, let us map théh limb-rate arrayy;
into the jth limb-link twist t; 5.

. 0 . 1 .

with

0 1 0

Ujys = |: e; (I./)Em; 0 :| J=12.3 (28b)
wherem; denotes the vector stemming frody and ending

at M;. Moreover,! denotes the length of the limb-link,

the distance from4; to the c.o.m. of the limb-link. Then,

S Upper MuvingPlazfo

__/E’ Elevation Hock

Fig. 3. Photo of the prototype of the_RR planar parallel robot

V. MODEL VALIDATION

A desk-top scale prototype of the RR robot was designed
and prototyped. Its prototype is shown in Fig. 3.

The robot is driven by three identical voice-coil actuators
The slider of the actuated jBint contains the moving coil of
the actuator and the plate attached to the moving coil. The
MP is composed of three parts, namely, the lower moving
platform, the elevation hock and the upper moving platform.

The side length: of the MP triangle, the side length of
the BP triangle and the lengthof the limb-link are given
below:

a =110 mm, b=400mm, [ =159.15 mm (32)
Moreover, the inertia properties of the different parts are

recorded in Table I.

TABLE |
INERTIA PROPERTIES OF THE PARTS IN THE ROBOT

Part Mass (g) | Moment of inertia® (g-mm?)
Actuator moving colil 1020 -
Actuator plate 449.66 -
Limb-link 638.63 1578606.60
Lower moving platform| 417.35 716283.92
Elevation puck 287.65 132353.74
Upper moving platform| 1047.57 5324476.16

aMoment of inertia w.r.t. the c.o.m. of each part.

In order to validate the above-derived model, kinematics

according to (3) and (5), the mapping from the active joinnd dynamics simulation tests of the robot under different

rate arrayua into the jth limb-rate arrayy, is obtained:
v, =J3;'H 'Du, j=1,2,3 (29)

Therefore, the twist-shaping matric8s;;3, j = 1,2,3, of
the limb-links are
T3 = Uj+3J;1H—1D, j=1,2,3 (30)

The last, namely, th&@th moving rigid body is the MP.
Based on (5), its twist-shaping matrix is

tr =ty — Tr=H'D (31)

trajectories were conducted not only in Matlab, based on the
mathematical models derived in Sections 3 and 4, but also
in ADAMS, based on its CAD model. Two test trajectories
were selected to represent various motions of the robots& he
trajectories are expressed by the displacements of the MP
centroidC, in the Cartesian frame, and the angle of rotation of
the MP from its reference pose of Fig. 2. The trajectories are
combinations of the high-frequency, small-amplitude hamio

6The actuators in the 3RR planar robot are VCAR0262-
0249-00A, manufactured by SUPT Motion (http://supt-
motion.com/en/productshov5 _76.html). Their total stroke is 24.9 mm,
while their peak force is 262 N.



motions alongX-, Y-axes and around’-axis, as described Mathmatical Model
below: " ‘ ‘ MOtPrl ----'-:---ADAMS ?imulation
z1(t) = —2sin (20t + Z) + 1 (mm) 0/\/\/\/\/\/\}
y1(t) = 4sin (207t — Z) 42 (mm) (33)
01 (t) = (3/180)7TSIH (QOﬂ-t) (ra'd) 7100 0.‘1 0.‘2 0.‘3 0.‘4 0.‘5 0.6
zo(t) = —2sin (207t + %) + 1 (mm) _ Motor 2
y2(t) = 4sin (207t — £) + 2 (mm) (34) £ | | |
O2(t) = (3/180)7sin (107t) (rad) é
Under Matlab, the simulation test trajectories are first 2 | | | | |
transformed into the motor displacements in joint space via ~ ° ° ot 02 03 04 08 06
the inverse-kinematics model. Then, based on the inverse- N ‘ _ Motor3
dynamics model, the motor forces were calculated. Under
ADAMS, the CAD model of the robot is shown in Fig. 4. In .
the two test trajectories, the motor displacements andeforc W\/\/W
calculated from the mathematical models and simulated in 0} o = = - - 2
ADAMS, are shown in Figs. 5 and 6. Time (s)

(a) Motor displacements

Mathmatical Model
Motor 1 [ ADAMS Simulation

e
501 J
50 4

I I I I I
0 0.1 0.2 03 0.4 0.5 0.6

Motor 2

B
g0
5
LL_50,
Fig. 4. CAD model of the 3-RR planar parallel robot in ADAMS simulation o o1 0z 05 0 0 06
Motor 3
The results calculated via the mathematical models and sof ]
those reported by ADAMS are apparently in agreement, which 0/\/\/\/\/\/\;
shows that the kinematics and the dynamics models derived in sok 1
this paper, based on screw theory and the NOC, are correct . o o o 5 = o
They can be used in the dynamics simulation and model-basec Time (s)

control of the robot introduced in this paper.
(b) Motor forces

VI. CONCLUSIONS Fig. 5. Mathematical model vs. ADAMS simulation under Tcagey 1

A systematic approach to the formulation of the dynamics
of PKMs, based on the concept of the NOC, was proposed.
This approach was demonstrated on a planar parallel robot ACKNOWLEDGMENT
designed for high-frequency, small-amplitude displacetsie
Its kinematics and dynamics modeling were reported. Then,
upon comparison with the ADAMS simulation results, our The first author would like to acknowledge the McGill
methodology is proven to be not only accurate, but aldéngineering Doctoral Award (MEDA) and the Chinese Schol-
effective for dynamics modeling. It can be used for tharship Council (CSC) Scholarship (No.201708880005) for
dynamic simulation and real-time control of a parallel rofoo  their financial support. The second and third authors acknow
high-frequency, small-amplitude displacements. Finalhe edge the support received from Canada’s Natural Sciences
physical prototype of the robot introduced here is in itslfinand Engineering Research Council (NSERC) through Grants
stages of commissioning. Further progress on this progectNo. RGPIN-2015-03864 and RGPIN-2016-04692, respective-
the subject of a forthcoming paper. ly.



Mathmatical Model

where R denotes the circumradius of the BP triangle. The

0 ‘ _ Motor 1 T ADAMS Simluon equation of£; in the OXY frame is thus expressed as
0/\"‘\/\/\/\“‘\/ yfyBj:tan(ﬁj (xmej)a .7:1;273 (36)
The distancel{ from C to £; is calculated as
10O 0.‘1 0.‘2 0.‘3 0.‘4 0.‘5 0.6
ﬁ vor 2 a = [Eetands —ve v - Smi 0y g
Ew ‘ Vtan?g; + 1
£ (37)
E o The distancel* from M; to £; is, in turn,
&% 01 02 03 04 05 06 de = d]C — Tsi (E - 9) y J = 1,2,3 (38)
10 Motor 3 wherer denotes the circumradius of the MP triangle. There-
fore, the joint variables 4; and y,;; are calculated as
pa; = arcsin (de/l), onj =T 40— paj (39)

0.1 0.2 03

Time (s)

0.4 05 0.6

(a) Motor displacements

Mathmatical Model

ADAMS Simulation

Motor 1

Force (N)
g8 o &

(1]

(2]

(3]

0.3
Time (s)

0 0.1 0.2 04 0.5 0.6

(4]

(b) Motor forces

(5]

Fig. 6.
(6]

Mathematical model vs. ADAMS simulation under Tcagey 2

APPENDICES [7]

A. Inverse Displacement Analysis (8]

Here, we focus on the calculation of the joint vari-
ables, {¢4;}3 and {¢a;}3, given the robot posturgp =
[9 Te  Ye }T

Let £; denote the line along thgth BP side. This line is [1g
parallel toe; and passes through;, whose coordinates in the
OXY frame are

-]

£
YBj

(9

cos (¢J —7/6) :| (35)

sin (; — 7/6)

B. Representation of the Twist-shaping Matrices

When representing the twist-shaping matri¢& }$ in the
OXY Z frame, vectors{e;}3, {pun;}3, {m;}3 and {pa;}3
are needed. In the frame of interest, the foregoing vectars a
expressed as

.|

S0t
‘ ‘ 03 ‘ ‘ 06 Pumj = MJE =T |:

cos (paj + ¢;)
sin (pa; + ¢5)

Cos¢p;

—
sing; } i =AM =1 [

cos (a; + omj — /6 + ¢;)

sin (pa; + @ary — /6 + 6;) ] (1)

Paj = Aj8 =m; + Py (42)
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